Pseudo Asymptotic Behavior of Mild Solution for Nonautonomous Integrodifferential Equations with Nondense Domain

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Asymptotic Behavior of Mild Solution for Semilinear Fractional Integro-differential Equations

In this paper, by the weighted ergodic function based on the measure theory, we study the pseudo asymptotic behavior of mild solution for semilinear fractional integro-differential equations. The existence, unique of -pseudo anti-periodic ( -pseudo periodic, -pseudo almost periodic, -pseudo almost automorphic) solution are investigated. Moreover, an application to fractional partial differentia...

متن کامل

Asymptotic Properties of Mild Solutions of Nonautonomous Evolution Equations with Applications to Retarded Differential Equations

We investigate asymptotic properties of mild solutions of the inhomoge-neous nonautonomous evolution equation d dt u(t) = (A+B(t))u(t)+f(t); t 2 R, where (A; D(A)) is a Hille-Yosida operator on a Banach space X, B(t), t 2 R, is a family of operators in L(D(A); X) satisfying certain boundedness and measurability conditions , and f 2 L 1 loc (R; X). The mild solutions of the corresponding homogen...

متن کامل

Existence of anti-periodic (differentiable) mild solutions to semilinear differential equations with nondense domain

In this paper, we investigate the existence of anti-periodic (or anti-periodic differentiable) mild solutions to the semilinear differential equation [Formula: see text] with nondense domain. Furthermore, an example is given to illustrate our results.

متن کامل

Asymptotic Behavior and Hypercontractivity in Nonautonomous Ornstein-uhlenbeck Equations

In this paper we investigate a class of nonautonomous linear parabolic problems with time-depending Ornstein-Uhlenbeck operators. We study the asymptotic behavior of the associated evolution operator and evolution semigroup in the periodic and non-periodic situation. Moreover, we show that the associated evolution operator is hypercontractive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/419103